References

  1. https://bids-specification.readthedocs.io/en/stable/
  2. Melloni, L., Mudrik, L., Pitts, M., Bendtz, K., Ferrante, O., Gorska, U., ... & Tononi, G. (2023). An adversarial collaboration protocol for testing contrasting predictions of global neuronal workspace and integrated information theory. PLoS One, 18(2), e0268577. https://doi.org/10.1371/journal.pone.0268577
  3. COGITATE - Preregistration v4 - December 2022
  4. GDPR (General Data Protection Regulation)
  5. HIPAA (Health Insurance Portability & Accountability Act)
  6. Tarr, M. J. (1996). The Object Databank. Carnegie Mellon University, Tarr Lab page, Databank direct link.
  7. Willenbockel, V., Sadr, J., Fiset, D., Horne, G. O., Gosselin, F., & Tanaka, J. W. (2010). Controlling low-level image properties: the SHINE toolbox. Behavior Research Methods, 42(3), 671-684. https://doi.org/10.3758/BRM.42.3.671
  8. Glover, G. H. (1999). Deconvolution of impulse response in event-related BOLD fMRI1. Neuroimage, 9(4), 416-429. https://doi.org/10.1006/nimg.1998.0419
  9. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spatial vision, 10(4), 437-442. https://doi.org/10.1163/156856897x00366
  10. Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis: I. Segmentation and surface reconstruction. Neuroimage, 9(2), 179-194. https://doi.org/10.1006/nimg.1998.0395
  11. Jenkinson, M., & Smith, S. (2001). A global optimisation method for robust affine registration of brain images. Medical image analysis, 5(2), 143-156. https://doi.org/10.1016/S1361-8415(01)00036-6
  12. Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., Johansen-Berg, H., ... & Matthews, P. M. (2004). Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage, 23, S208-S219. https://doi.org/10.1016/j.neuroimage.2004.07.051
  13. Rohr, K., Stiehl, H. S., Sprengel, R., Buzug, T. M., Weese, J., & Kuhn, M. H. (2001). Landmark-based elastic registration using approximating thin-plate splines. IEEE Transactions on medical imaging, 20(6), 526-534. https://doi.org/10.1109/42.929618
  14. Joshi, A., Scheinost, D., Okuda, H., Belhachemi, D., Murphy, I., Staib, L. H., & Papademetris, X. (2011). Unified framework for development, deployment and robust testing of neuroimaging algorithms. Neuroinformatics, 9, 69-84. https://doi.org/10.1007/s12021-010-9092-8
  15. Yang, A. I., Wang, X., Doyle, W. K., Halgren, E., Carlson, C., Belcher, T. L., ... & Thesen, T. (2012). Localization of dense intracranial electrode arrays using magnetic resonance imaging. Neuroimage, 63(1), 157-165. https://doi.org/10.1016/j.neuroimage.2012.06.039
  16. Groppe, D. M., Bickel, S., Dykstra, A. R., Wang, X., Mégevand, P., Mercier, M. R., ... & Honey, C. J. (2017). iELVis: An open source MATLAB toolbox for localizing and visualizing human intracranial electrode data. Journal of neuroscience methods, 281, 40-48. https://doi.org/10.1016/j.jneumeth.2017.01.022
  17. Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. Neuroimage, 38(1), 95-113. https://doi.org/10.1016/j.neuroimage.2007.07.007
  18. Esteban, O., Birman, D., Schaer, M., Koyejo, O. O., Poldrack, R. A., & Gorgolewski, K. J. (2017). MRIQC: Advancing the automatic prediction of image quality in MRI from unseen sites. PLoS ONE, 12(9), 1–21. https://doi.org/10.1371/journal.pone.0184661
  19. Esteban, O., Ciric, R., Finc, K., Blair, R. W., Markiewicz, C. J., Moodie, C. A., Kent, J. D., Goncalves, M., DuPre, E., Gomez, D. E. P., Ye, Z., Salo, T., Valabregue, R., Amlien, I. K.,Liem, F., Jacoby, N., Stojić, H., Cieslak, M., Urchs, S., Halchenko, Y. O., … Gorgolewski, K. J. (2020). Analysis of task-based functional MRI data preprocessed with fMRIPrep. Nature Protocols, 15(7), 2186–2202. https://doi.org/10.1038/s41596-020-0327-3
  20. Power, J. D., Mitra, A., Laumann, T. O., Snyder, A. Z., Schlaggar, B. L. & Petersen, S. E. (2014). Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage. Jan 1;84:320-41. https://doi.org/10.1016/j.neuroimage.2013.08.048
  21. Li, X., Morgan, P. S., Ashburner, J., Smith, J., & Rorden, C. (2016). The first step for neuroimaging data analysis: DICOM to NIfTI conversion. Journal of neuroscience methods, 264, 47-56. https://doi.org/10.1016/j.jneumeth.2016.03.001
  22. Omer Faruk Gulban, Dylan Nielson, john lee, Russ Poldrack, Chris Gorgolewski, Vanessasaurus, & Chris Markiewicz. (2022). poldracklab/pydeface: PyDeface v2.0.2 (v2.0.2). Zenodo. https://doi.org/10.5281/zenodo.6856482
  23. https://wiki.xnat.org/documentation/
  24. Templeton World Charity Foundation