Melloni, L., Mudrik, L., Pitts, M., Bendtz, K., Ferrante, O., Gorska, U., ... & Tononi, G. (2023). An adversarial collaboration protocol for testing contrasting predictions of global neuronal workspace and integrated information theory. PLoS One, 18(2), e0268577. https://doi.org/10.1371/journal.pone.0268577
Willenbockel, V., Sadr, J., Fiset, D., Horne, G. O., Gosselin, F., & Tanaka, J. W. (2010). Controlling low-level image properties: the SHINE toolbox. Behavior Research Methods, 42(3), 671-684. https://doi.org/10.3758/BRM.42.3.671
Glover, G. H. (1999). Deconvolution of impulse response in event-related BOLD fMRI1. Neuroimage, 9(4), 416-429. https://doi.org/10.1006/nimg.1998.0419
Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spatial vision, 10(4), 437-442. https://doi.org/10.1163/156856897x00366
Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis: I. Segmentation and surface reconstruction. Neuroimage, 9(2), 179-194. https://doi.org/10.1006/nimg.1998.0395
Jenkinson, M., & Smith, S. (2001). A global optimisation method for robust affine registration of brain images. Medical image analysis, 5(2), 143-156. https://doi.org/10.1016/S1361-8415(01)00036-6
Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., Johansen-Berg, H., ... & Matthews, P. M. (2004). Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage, 23, S208-S219. https://doi.org/10.1016/j.neuroimage.2004.07.051
Rohr, K., Stiehl, H. S., Sprengel, R., Buzug, T. M., Weese, J., & Kuhn, M. H. (2001). Landmark-based elastic registration using approximating thin-plate splines. IEEE Transactions on medical imaging, 20(6), 526-534. https://doi.org/10.1109/42.929618
Joshi, A., Scheinost, D., Okuda, H., Belhachemi, D., Murphy, I., Staib, L. H., & Papademetris, X. (2011). Unified framework for development, deployment and robust testing of neuroimaging algorithms. Neuroinformatics, 9, 69-84. https://doi.org/10.1007/s12021-010-9092-8
Yang, A. I., Wang, X., Doyle, W. K., Halgren, E., Carlson, C., Belcher, T. L., ... & Thesen, T. (2012). Localization of dense intracranial electrode arrays using magnetic resonance imaging. Neuroimage, 63(1), 157-165. https://doi.org/10.1016/j.neuroimage.2012.06.039
Groppe, D. M., Bickel, S., Dykstra, A. R., Wang, X., Mégevand, P., Mercier, M. R., ... & Honey, C. J. (2017). iELVis: An open source MATLAB toolbox for localizing and visualizing human intracranial electrode data. Journal of neuroscience methods, 281, 40-48. https://doi.org/10.1016/j.jneumeth.2017.01.022
Esteban, O., Birman, D., Schaer, M., Koyejo, O. O., Poldrack, R. A., & Gorgolewski, K. J. (2017). MRIQC: Advancing the automatic prediction of image quality in MRI from unseen sites. PLoS ONE, 12(9), 1–21. https://doi.org/10.1371/journal.pone.0184661
Esteban, O., Ciric, R., Finc, K., Blair, R. W., Markiewicz, C. J., Moodie, C. A., Kent, J. D., Goncalves, M., DuPre, E., Gomez, D. E. P., Ye, Z., Salo, T., Valabregue, R., Amlien, I. K.,Liem, F., Jacoby, N., Stojić, H., Cieslak, M., Urchs, S., Halchenko, Y. O., … Gorgolewski, K. J. (2020). Analysis of task-based functional MRI data preprocessed with fMRIPrep. Nature Protocols, 15(7), 2186–2202. https://doi.org/10.1038/s41596-020-0327-3
Power, J. D., Mitra, A., Laumann, T. O., Snyder, A. Z., Schlaggar, B. L. & Petersen, S. E. (2014). Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage. Jan 1;84:320-41. https://doi.org/10.1016/j.neuroimage.2013.08.048
Li, X., Morgan, P. S., Ashburner, J., Smith, J., & Rorden, C. (2016). The first step for neuroimaging data analysis: DICOM to NIfTI conversion. Journal of neuroscience methods, 264, 47-56. https://doi.org/10.1016/j.jneumeth.2016.03.001
Omer Faruk Gulban, Dylan Nielson, john lee, Russ Poldrack, Chris Gorgolewski, Vanessasaurus, & Chris Markiewicz. (2022). poldracklab/pydeface: PyDeface v2.0.2 (v2.0.2). Zenodo. https://doi.org/10.5281/zenodo.6856482